Multiple quantile regression analysis of longitudinal data: Heteroscedasticity and efficient estimation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantile Regression Estimation of Nonlinear Longitudinal Data

This paper examines a weighted version of the quantile regression estimator defined by Koenker and Bassett (1978), adjusted to the case of nonlinear longitudinal data. Different weights are used and compared by computer simulation using a four-parameter logistic growth function and error terms following an AR(1) model. It is found that the estimator is performing quite well, especially for the ...

متن کامل

Efficient Multivariate Quantile Regression Estimation

We propose an efficient semiparametric estimator for the multivariate linear quantile regression model in which the conditional joint distribution of errors given regressors is unknown. The procedure can be used to estimate multiple conditional quantiles of the same regression relationship. The proposed estimator is asymptotically as efficient as if the conditional distribution were known. Simu...

متن کامل

Quantile Regression for Longitudinal Data

The penalized least squares interpretation of the classical random effects estimator suggests a possible way forward for quantile regression models with a large number of “fixed effects”. The introduction of a large number of individual fixed effects can significantly inflate the variability of estimates of other covariate effects. Regularization, or shrinkage of these individual effects toward...

متن کامل

Efficient quantile marginal regression for longitudinal data with dropouts.

In many biomedical studies independent variables may affect the conditional distribution of the response differently in the middle as opposed to the upper or lower tail. Quantile regression evaluates diverse covariate effects on the conditional distribution of the response with quantile-specific regression coefficients. In this paper, we develop an empirical likelihood inference procedure for l...

متن کامل

Efficient Semiparametric Seemingly Unrelated Quantile Regression Estimation

We propose an efficient semiparametric estimator for the coefficients of a multivariate linear regression model — with a conditional quantile restriction for each equation — in which the conditional distributions of errors given regressors are unknown. The procedure can be used to estimate multiple conditional quantiles of the same regression relationship. The proposed estimator is asymptotical...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Multivariate Analysis

سال: 2017

ISSN: 0047-259X

DOI: 10.1016/j.jmva.2017.01.009